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Abstract—Intelligent unmanned aerial vehicle (UAV)
surveillance based on infrared imaging has wide applica-
tions in the anti-UAV system for protecting urban secu-
rity and aerial safety. However, weak target features and
complex background distraction pose great challenges for
the accurate detection of UAVs. To address this issue, we
propose a novel differentiated attention guided network to
adaptively strengthen the discriminative features between
UAV targets and complex background. First, a novel spatial-
aware channel attention (SCA) is introduced into deep lay-
ers via preserving critical spatial features and leveraging
channel interdependencies to focus on the large-scale tar-
gets. The channel-modulated deformable spatial attention
is introduced into shallow layers via refining channel con-
text and dynamically perceiving the spatial features for fo-
cusing on the small-scale targets. A combination of the
above two attention mechanisms is employed in intermedi-
ate layers of the network for concentrating on the medium-
scale targets. Then, we embed a feature aggregator at the
detection branches to guide the information exchange of
high-level feature maps and low-level feature maps with a
bottom-up context modulation, and integrate an SCA at the
end to further boost the distinctive feature representation
for task-awareness. The above design can adaptively en-
hance multiscale UAV target features and suppress com-
plex background interferences, leading to better detection
performance, especially for small targets. Extensive exper-
iments on real infrared UAV datasets reveal that the pro-
posed method outperforms the baseline object detectors
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by a large margin, validating its feasibility in real-world
infrared UAV detection. The source code can be found at
https://github.com/KALEIDOSCOPEIP/DAGNet.

Index Terms—Attention mechanism, infrared target de-
tection, network transformation, real-time UAV surveillance,
unmanned aerial vehicles (UAVs).

I. INTRODUCTION

R ECENTLY, unmanned aerial vehicles (UAVs) have been
commonly used in civil and military fields for its high

mobility, small size, and low cost, but their great threats toward
aerial security as well as public safety raises serious concerns
and calls for necessary containment measures. Due to the round-
the-clock working capability and long monitoring distance, ther-
mal infrared imaging has become one of the most appropriate
and important sensing technologies for constant surveillance of
UAVs [1], [2], [3], [4] in the anti-UAV system, as illustrated in
Fig. 1. However, there exist the following challenges in the task
of infrared UAV surveillance.

1) Weak target features: Compared to optical images, UAV
targets usually occupy only a small portion of the whole
image and lack conspicuous features, such as texture and
color, making it difficult to identify UAV targets.

2) Varying scale of UAV targets: The dynamic changes of
UAVs during the motion lead to multiscale characteristics
in the observed UAV images. In contrast, the effective de-
tection of small-scale UAV targets is of more significance,
since long-range monitoring provides adequate time for
early alarm and countermeasures.

3) Complex background interference: UAV targets can fly
in backgrounds such as strong and bright clouds, trees
and bushes, compounds, etc. The targets can be easily
interfered or submerged by these backgrounds, leading
to weak and dim UAV targets.

In this article, we aim at detecting multiscale infrared UAV
targets in single frame under various complex background
conditions.

In the past few years, many works have been dedicated to
solving the problem of infrared target detection, which can
be divided into two categories: 1) model-driven methods; 2)
data-driven methods. The former depends largely on hand-
crafted features of infrared targets, such as partial sum of tensor
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Fig. 1. Illustration of intelligent UAV surveillance. The infrared sen-
sors capture images and transfer them to the proposed detection net-
work. The detection results will be further transferred to interdict UAVs.
S/M/L denote small/medium/large scale UAV targets, respectively. The
heatmaps on the right side of the different network layers show
DAGNet’s close attention to infrared UAV targets of different scales.

nuclear norm (PSTNN) [5] and double-neighborhood gradient
method (DNGM) [6]. These methods are comparatively easy
to implement, but they usually yield poor detection results
under complex backgrounds or when the target scales changes
frequently. The latter, based on convolutional neural networks
(CNNs), can adaptively learn the features from sample images.
Some state-of-the-art object detection baseline methods (e.g.,
Faster region-convolutional neural network (R-CNN) [7], Cas-
cade R-CNN [8], single shot detector (SSD) [9], you only look
once v5 (YOLOv5) [10], RetinaNet [11], EfficientDet [12])
were proposed to deal with multiscale object detection issues.
However, these methods are tailored for high resolution optical
images with rich details, and it is difficult for them to achieve
high detection performance for infrared images with low res-
olution and coarser details. Meanwhile, many recent studies
attempted to design CNN-based models dedicated to infrared
target detection. Hou et al. [13] proposed robust infrared small
target detection network (RISTDNet) to detect infrared UAV
targets with few obvious features. Fang et al. [2] proposed dilated
residual U-Net (DRUNet) incorporating global and local prop-
erties using dilated residual networks. Dai et al. [14] proposed
the asymmetric contextual modulation (ACM), utilizing context
with attention to capture features of small infrared targets. These
methods are more compatible and effective for infrared UAV
target detection than baseline object detectors, but they still fail
to take full advantage of infrared UAV target features.

To better tackle the difficulties within infrared UAV target
detection mentioned above, we propose a differentiated attention
guided network (DAGNet) to adaptively capture and enhance
the discriminative features between multiscale UAV targets and
the complex background. Concretely, our DAGNet possesses
the following characteristics:

1) Careful arrangement of attention mechanisms in
backbone: The attention mechanism is intrinsically capa-
ble of selecting the discriminative hierarchical features in
backbone and automatically suppressing the background.
However, the contribution of different hierarchical fea-
tures to the detection of targets at different scales is dif-
ferent, so it is crucial to integrate suitable attention mech-
anisms into the network. In this study, we embed a novel
channel-modulated deformable spatial attention (CDSA)
in deep layers for focusing on the large-scale targets,

spatial-aware channel attention (SCA) in low-level layers
to focus on the small-scale targets, and dual-dimension
combined attention (DCA) as a combination of the CDSA
and SCA at stages in between for concentrating on the
medium-scale targets.

2) Spatial-aware Channel Attention: Channel attention
is used to adaptively weight features distributed on the
channel and can be viewed as a task-oriented selection
process for objects. Hu et al. [15] proposed the channel
attention squeeze-and-excitation network (SENet) using
global average pooling and Woo et al. [16] proposed an
improved channel attention called convolutional block
attention module (CBAM) with global average and max
pooling operations. However, these attention mechanisms
utilize only one global value to represent the whole spatial
properties of one channel feature map, which severely
weaken the feature representation ability of infrared UAV
targets, and thus might not correctly represent the true sig-
nificance of each channel [14]. To address this problem,
we design the SCA. It adopts both n× n max pooling
and n× n convolution to aggregate spatial information
in order to better represent the spatial properties for one
channel feature map. By this, features of infrared UAV
targets can effectively reflect on channel weights and thus
be correctly been strengthened, which leads to higher
detection performance.

3) Channel-modulated Deformable Spatial Attention:
Spatial attention is used to weight features distributed on
the spatial dimension, where it adaptively highlights the
target pixel regions and suppresses background contents.
Woo et al. [16] proposed an spatial attention mechanism
with two channel pooling operations, which, however,
may also damage the valid representation of channel-wise
features within one spatial element, and is unable to model
geometric transformation. In this work, we propose a
CDSA, where we adopt point-wise convolution for chan-
nel information exchange, and subsequent deformable
convolution [17] to dynamically adjust the receptive field
in light of UAV target scales and poses. Less compression
of channel information and dynamic spatial information
fulfills a more effective spatial information representa-
tion, which helps discriminate the real infrared UAV tar-
get especially in complex background conditions, while
being more sensitive toward the location of the target.

4) FA at the feature pyramid network: In the original fea-
ture pyramid network (FPN) [18], the high-level feature
map will be fused with the neighboring low-level feature
map in a top-down manner for the purpose of multiscale
detection. However, infrared UAV targets might be sub-
merged by the background in deep layers, and high-level
features from deep layers cannot provide accurate seman-
tic information about the targets. Therefore, the feature
aggregator (FA) is proposed.
First, a channel attention modulation module is intro-
duced to guide the refinement of the high-level features
with spatial details of the neighboring low-level feature
maps in a bottom-up manner. Then, we add one SCA at the
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end to increase task awareness. Compared to the original
fusion strategy, our FA is capable of not only aggregating
low-level and high-level features for a valid multiscale
infrared UAV detection, but also once again highlighting
the target as well as suppressing the backgrounds.

In summary, our main contributions are summarized as
follows.

1) For infrared-imaged UAV detection tasks under com-
plex background, we propose the DAGNet based on the
differentiated attention feature enhancement mechanism
(DAFEM). It arranges different types of attention mech-
anisms in the network according to the contribution of
different hierarchical target features to the detection of
targets at different scales. Such arrangement can adap-
tively strengthen the hierarchical multiscale UAV targets
features as well as suppress the background content, thus
boosting detection performance.

2) In order to preserve more multiscale (especially small-
scale) infrared UAV target features within the network for
finer feature representations, we propose the CDSA. For
better UAV target identification against distracted targets
as well as better target localization, we devise the SCA.
The DCA is proposed to enhance intermediate features
that contain abundant spatial and channel features. These
attention mechanisms can adaptively characterize the dis-
tinctive features of multiscale infrared UAV targets and
the dynamic scenes, making the detection model more
robust to complex backgrounds.

3) In order to improve multiscale detection performance for
infrared UAV targets, we propose the FA. The incor-
poration of appropriate attention mechanisms strength-
ens the network’s target localization and classification
awareness, by incorporating spatial details from low-
level feature maps to high-level feature maps with a
context modulation module, and adaptively selecting
crucial task-related features. This can further improve
the performance of detecting multiscale infrared UAV
targets.

The rest of this article is organized as follows. Section II briefs
the related works. Section III specifies the proposed network.
Section IV shows the experimental results. Finally, Section V
concludes this article.

II. RELATED WORK

A. Anchor-Based Object Detection

Anchor-based object detection methods can generally be
categorized into the two-stage and single-stage methods. The
former ones (e.g., Faster R-CNN [7]) often exploit a region
proposal network (RPN) to generate region proposals in the
first stage, and then forwards them to the second stage for
further classification and localization. The latter ones (e.g.,
SSD [9]) manage to straightly obtain class probabilities and ob-
ject bounding boxes results based on global image classification
and regression minus RPN. But neither can detect objects in an
accurate and efficient manner. Methods such as RefineDet [19]
were proposed to address this imbalance, but still limited in
accuracy for their architectural design. In this article, we employ

the attention mechanisms and network architecture transforma-
tion to build a robust and efficient network for infrared UAV
detection.

B. Attention Mechanisms

Attention mechanisms, such as channel attention and spatial
attention, are widely adopted to enhance critical features in
the network. Hu et al. [15] introduced the SENet to obtain the
global channel-wise correlative response and weight the feature
map accordingly. Woo et al. [16] then proposed the CBAM,
coupling channel-wise attention with space-wise attention to
enhance features from two different aspects. Although previous
studies [20], [21], [22] embedded attention mechanisms, their
approaches lacked careful analysis of the feature representations
of infrared targets on different output feature maps from different
layers, thus still not capable enough of dealing with problems
like the complex background in the UAV detection. Our method
takes advantage of multiple different attention mechanisms that
are important for multiscale infrared UAV target detection.

C. Infrared Small Target Detection Methods

Infrared small target detection methods can be categorized
as model-driven traditional ones and data-driven deep-learning
ones. The former relies on handcrafted feature extractor (FE)
to discriminate infrared small target from different backgrounds
(e.g., PSTNN [5] and DNGM [6]). Despite some performance
achievements, these methods are highly susceptible to varying
detection circumstances like complex background (e.g., strong
clouds and trees), and suffer from strenuous hyper-parameters
tuning, thus not compatible with real-scene infrared UAV detec-
tion tasks. The latter learns to detect with a network architecture
and a large amount of data (e.g., RISTDNet [13] and ACM [14]).
Although they perform better than model-driven methods, they
face challenges in accurately extracting and representing multi-
scale UAV target features under complex dynamic scenes, thus
many false alarms or missed detections. Our method makes use
of different attention mechanisms to enhance target features dy-
namically and adaptively, thus achieving better results than other
state-of-the-art approaches (i.e., DNGM [6] and ACM [14]).

III. METHODOLOGY

In this section, we describe the details of the overall proposed
network design, covering the transformable convolutional object
detection network and the differentiated attention mechanisms.

A. Transformable Convolutional Object Detection
Network

We design the transformable convolutional object detection
network as illustrated in Fig. 2, in order to establish a single-path
backbone network for boosting inference speed. It consists of
the following three main parts: 1) the FE; 2) FA; 3) the detection
head (DH).

1) Feature Extractor (FE): FE is the backbone network of
the proposed DAGNet, which is used to effectively and ef-
ficiently extract features of infrared UAV targets, inspired by
RepVGG [23]. We arrange five network stages in the FE, which
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Fig. 2. Overview of the architecture of DAGNet. The first tier (composed of five network stages with TCBs) is the FE. The CDSA, DCA, and SCA
are the proposed attention mechanisms, which stand for channel-modulated deformable spatial attention, dual-dimension combined attention, and
spatial-aware channel attention, respectively. The second tier is the FAs. MCB is the multicolvolution block consisting of one 1 × 1 and two 3 × 3
consecutive convolutions. The third tier is the detection head (bbox_pred and cls_prob). The dashed boxes extended from CDSA, DCA, and SCA
indicate the effect of the corresponding attention mechanism, where the red-orange images denote the attention maps, and the left/right bluish
images are the intermediate feature maps before/after the influence of the attention.

Fig. 3. Illustration of the TCB. (a) Original TCB in the training phase.
(b) Intermediate form of the TCB. (c) Final TCB structure in the inference
phase.

consists of 1, 4, 6, 16, and 1 transformable convolution blocks
(TCBs), respectively. The specification of FE architecture can
be found in the supplementary material.

The TCB is the main component of FE. The training-phase
and the inference-phase TCB are given in Fig. 3(a) and (c).
In the training phase, the input feature map will be fed into
three convolution paths, i.e., 3 × 3 convolutional path, 1 × 1
convolutional path, and identity path. Then, the results from
three paths are added together and go through an activation
layer. In the inference phase, the TCB will transform from a
multipath form to a single-path one in order to increase the
inference speed, where it only contains one 3 × 3 convolution
layer and an activation layer. This transformation of TCB can
not only learn multireceptive field feature representations in the
training phase, but also considerably reduce model complexity
in the inference phase, which helps to achieve a better tradeoff
between detection performance and efficiency [23].

2) Feature Aggregator: To realize multiscale infrared UAV
target detection, we take the output feature maps from stage
2 to 5 from the backbone, and fuse them gradually in a top-
down way. In the backbone network, low-level feature maps
contain finer structural detail features conducive to localization
and smaller targets detection; deep feature maps have richer

Fig. 4. Comparison of different feature fusion strategies. (a)–(c) are
the original FPN [18], the ACM [14], and the proposed FA, respectively.
Activation operations are omitted.

semantic features beneficial to classification and larger targets
detection. Small UAV targets in high-level features can be
easily overwhelmed by the complex background, thus a direct
top-down feature fusion is hard to help highlight the details of
infrared UAV targets. The original FPN [shown in Fig. 4(a)]
only considered a vanilla operation of fusing the shallow feature
map with the neighboring upsampled deep feature map, which
lacks a comprehensive inspection of the importance of both
feature maps. While in ACM [shown in Fig. 4(b)], the two
weighting branches exchange feature importance information
with both shallow and deep feature maps, where semantic
and structural information complement each other. But there
is no relatively valid feature recalibration operation after feature
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fusion, since features might misalign after being weighted.
To deal with this issue, we propose to propagate low-level
spatial details by multiplying an element-wise attention map
from low-level feature maps into deep feature maps, and em-
ploy a proposed channel attention SCA after feature fusion.
This constitutes a bottom-up contextual modulation path that
is capable of complementing spatial properties in deep feature
maps, and thus increases the network’s awareness of the target
location, which further facilitates the detection of infrared UAV
targets.

The proposed FA is presented in Fig. 4(c). We firstly use one
point-wise convolution and two 3 × 3 convolutions to calibrate
features from low-level feature map as well as to fix the channel
to 256. And we use deconvolution to upsample the deep feature
map to its 2× spatial size. Then two consecutive point-wise
convolutions are used on the low-level feature map to generate
the channel attention map. The first point-wise convolution
compresses the channel to 64, while the second one restores it
to 256, which aggregates channel contextual information. After
a sigmoid layer, this attention map is multiplied onto the deep
layer, and then the low-level and the deep feature maps are added
together. Finally, the fused feature map will go through an SCA
to recalibrate the features as well as to increase the model’s
task awareness. Given the input low-level feature map S and the
deep feature map D, the fusion operation can be formulated as
follows:

S′ = Conv_3 × 3(Conv_3 × 3(PWConv(S))) (1)

S′
map = σ(PWConv(PWConv(S′)))) (2)

D′ = S′
map � DeConv_2 × 2(S) (3)

O = SCA(D′ + S′) (4)

where PWConv denotes the point-wise convolution, De-
Conv_2 × 2 represents a deconvolution with a kernel of 2 × 2, σ
is the sigmoid function, and � means element-wise multiplica-
tion. S′ and D′ are two feature maps before addition fusion, S′

map
is the spatial attention map, and O is the output fused feature
map.

3) DH and Loss Function: The detection head classifies and
locates potential targets, and finally yields the detection results.
As shown in Fig. 2, we construct four detection branches for
target classification and localization. We also apply an anchor
calibration strategy that refines the prior boxes in the network,
where these boxes are coarsely calibrated before feature ag-
gregation according to the output feature representations, and
are further fed to the final bounding boxes regression for finer
localization. This strategy alleviates the one-shot-regression dis-
advantage introduced by the single-stage methods [19].

The loss function is divided into two parts: 1) the first part
derives from the first-stage anchor adjustment, which coarsely
decides anchors’ object attribute (foreground or background)
and their locations and sizes; 2) the second part performs
multiclass categorization and precise localization assisted by
aforementioned calibration results. The overall loss function is

given as follows:

L =
1

Nfs

{∑
i

Lo(pi, [gt
l
i ≥ 1]) +

∑
i

[gtli ≥ 1]Lr(xi, gt
b
i )

}

+
1

Nss

{∑
i

Lm(ci, [gt
l
i ≥ 1])+

∑
i

[gtli ≥ 1]Lr(ti, gt
b
i )

}

(5)

where subscripts fs and ss indicate the first stage and the second
stage;Lo,Lm, andLr are the losses of objectness categorization,
multiclass categorization, and bounding box regression; Nfs

and Nss denote the number of positive anchors in the first stage
and the second stage, respectively; i defines the index of the
anchor box, gtli and gtbi are the class label and the bounding
box from ground truths, pi is the objectness score, and ci is the
predicted class score. xi means the coordinates of the first-stage
calibrated anchors, while ti means the final predicted coordi-
nates of the output bounding boxes. The bracket represents the
signum function with the determining condition placed inside.
More details can be found in [19].

B. Differentiated Attention Feature Enhancement
Mechanism

In order to highlight the features of infrared UAV targets ac-
cording to the distribution of them from both spatial and channel
dimensions, we propose the differentiated attention feature en-
hancement mechanism (DAFEM), which includes SCA, CDSA,
DCA, and an arrangement of these attention mechanisms used in
our backbone network according to the feature representations.

1) Spatial-Aware Channel Attention: We design SCA to sort
out those UAV-related features by adaptively weighting the
significance of channel-wise features. The overview of this
attention is shown in Fig. 5(c), and the SENet channel attention
and CBAM channel attention are shown in Fig. 5(a) and (b),
respectively.

Assume the input feature map is X ∈ RC×H×W , where
C,H,W denote the number of channels, height and width,
respectively. Unlike SENet [15] and CBAM [16] that use global
pooling operations to obtain global spatial responses for each
channel, we instead use one max pooling operation with a kernel
size of n × n and a convolution operation with the same kernel
to do so. This results in two tensors X1 ∈ RC×H

n ×W
n and X2 ∈

RC×H
n ×W

n , where each element in one channel represents a
specific n × n region of the original input feature map. Con-
sidering the size of infrared UAV targets in our dataset is at
least 4 × 4 pixels, we set n = 4 (Ablation studies can be found
in the supplementary material). Compared to SENet and CBAM
using global pooling operations, the spatial properties of infrared
UAV targets are more likely to be retained after pooling, which
is greatly conducive to infrared UAV target detection since their
features can be easily submerged by the background in global
pooling operations. Besides, the upcoming channel attention is
able to more finely determine which channel is more closely
related to the infrared UAV target.

After spatial shrinkage, X1 and X2 are added together as X ′.
We then use a point-wise convolution to compute the overall
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Fig. 5. Comparison of different channel attention mechanisms. (a)
Original SENet channel attention [15]. (b) CBAM channel attention [16].
(c) Proposed SCA. The main difference is that it is able to preserve
more spatial properties for finer determination of which channel is more
related to UAV targets, so as to increase UAV target classification
performance against distracted objects.

significance of each channel, and then a deconvolution operation
to restore the spatial dimension from (C, H

n , W
n ) to (C,H,W ).

After going through a sigmoid layer to convert statistics between
0 and 1, the final channel attention map Xcmap ∈ RC×H×W is
achieved, and it will be multiplied onto the input feature map
element-wisely. This self-gated mechanism can be formulated
as

X1 = MP_n× n,X2 = Conv_n× n(r)(X) (6)

Yc(X) = X � σ(DeConv_2 × 2(PWConv(X1 +X2))) (7)

where X is the input feature map, X1 and X2 are the shrunk
intermediate feature maps using max pooling and convolution,
MP means max pooling, σ denotes sigmoid function, and Yc(X)
is the output channel-wisely augmented feature map.

By using SCA, the features of infrared UAV targets across
channel dimension will be given scores close to 1, while other
background-related channels will be given scores close to 0.
Therefore, infrared UAV target features will be enhanced while
backgrounds contents will be suppressed channel-wisely, thus
improving the network’s task awareness to discriminate between
real targets and complex backgrounds. As for SENet channel
attention [shown in Fig. 5(a)] and CBAM channel attention
[shown in Fig. 5(b)], they both resort to compressing spatiality
to only a 1 × 1 value, since they are effective for capturing
more global properties of comparatively big objects. However,
infrared UAV targets are typically small in size and dim in
illuminance, with less global properties but more local prop-
erties. Our proposed SCA [shown in Fig. 5(a)] can capture
more local properties and preserve more spatial details for finer
channel importance determination, thus improving UAV target
classification performance against distracted objects.

Fig. 6. Comparison of different spatial attention mechanisms. (a)
SENet-like spatial attention [15]. (b) CBAM spatial attention [16]; (c)
Proposed CDSA. The main difference is CDSA compresses less infor-
mation, which results to a better network awareness toward the location
of UAV targets in spatial dimension. This advantage can lead to better
localization of targets, and can preserve more features in the network.

2) Channel-Modulated Deformable Spatial Attention:
Space-wise features are equally significant to channel-wise
features, as they contain rich information of targets’ locations.
Thus, we design CDSA to augment spatial properties on spatial
dimension to highlight the infrared UAV targets as well as
repressing backgrounds, as is shown in Fig. 6(c). We also
provide a comparison with the SENet-like spatial attention and
the CBAM spatial attention in Fig. 6(a) and (b), respectively.

Given the same input feature map X ∈ RC×H×W , we first
use one point-wise convolution to modulate channel contex-
tual information as well as reduce channel dimensionality to
C
r (In our method we set r = 4, ablation study about this
hyperparameter can be found in the supplementary material).
Thereafter, we use a 3 × 3 deformable convolution and a batch
normalization (BN) to compute spatial significance statistics.
This deformable convolution can dynamically capture spatial
features according to UAV target scales and poses to form a
spatial attention map, which adaptively highlights target regions
as well as suppressing background contents, and hence improves
detection performance. We then use another point-wise convo-
lution to restore channel dimensionality back to C, operate a
sigmoid function and obtain the final spatial attention mapXsmap.
As for now, each spatial element on Xsmap ranges from 0 to 1,
where values close to 1 indicate the region is more likely to be
target-related, while those close to 0 indicate otherwise. Then,
Xsmap will be element-wisely multiplied onto the input feature
map. This spatial attention is formulated as

Ys(X)=X � σ(PWConv(BN(DeformConv(PWConv(X)))))
(8)

whereYs(X) is the output feature map space-wisely augmented,
DeformConv denotes the 3× 3 deformable convolution, and BN
means batch normalization.
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Fig. 7. Structure of the proposed DCA.

Similar to SCA, CDSA is able to assign higher scores to
regions of targets and lower scores to background contents,
which helps network to more precisely locate the target in
the image. Furthermore, since the infrared UAV targets are
comparatively small in size and dim in illuminance, igniting their
spatial existence is of great priority. By using CDSA to enhance
their spatial properties, features of infrared UAV target can be
more effectively utilized in deep layers. In comparison with the
SENet-like spatial attention [shown in Fig. 6(a)] and the CBAM
spatial attention [shown in Fig. 6(b)], one evident difference is
that our proposed CDSA [shown in Fig. 6(a)] does not compress
channel dimensionality to 1, where severe information loss may
result. In addition, the 3 × 3 deformable convolution operation
is more robust to object scales and shapes. These lead to better
localization of UAV targets.

3) Dual-Dimension Combined Attention: Feature maps from
intermediate stages of network usually contain both spatial and
semantic features. In this study, We couple SCA and CDSA
together and form DCA, as shown in Fig. 7. In DCA, features
are firstly augmented in channel dimension and then in spatial
dimension using SCA and CDSA consecutively. Our initial
thought for this structure is that we allege it is important to first
find which dimensions contain rich features of infrared UAV
targets, and then further search for the specific locations of the
targets on those channel feature maps.

4) Arrangement of Attention Mechanisms: In SENet [15],
there exists only the SE Block (channel attention) for each
convolutional block throughout the backbone network; simi-
larly, in CBAM [16], only the CBAM block (channel attention
and spatial attention) is present for each convolutional block
in the backbone network. However, in FPN [18], it is implied
that low-level feature maps contain finer structural features con-
ducive to localization and smaller targets detection; deep feature
maps have richer semantic features beneficial to classification
and larger targets detection. From this perspective, there are
different hierarchical feature representations in the backbone
network, suggesting that different attention mechanisms should
be employed corresponding to the feature hierarchy. Since the
proposed SCA is to enhance channel semantic features, CDSA
to spatial structural features, and DCA to both, we follow the
feature representations across our backbone network FE, and
embed different attention at the end of the network stages to
enhance the correspondingly rich features. We mark the four
output feature maps from FE stages 2–5 as A, B, C, and D,
respectively, and the arrangement of attention mechanisms is
given as follows:

1) Feature map A has a relatively large spatial size which we
perceive contains more fine spatial features that contribute
to targets localization, so we opt to use spatial attention
on it, as we embed one CDSA at the end of stage 2;

2) Feature map D has most channels that contain rich se-
mantics. In this case, we impose channel attention on it
by embedding one SCA at the end of stage 5;

3) Feature maps B and C, in our perspective, contain
both relatively rich structural and semantic features.
Therefore, we embed one DCA at the end of stage 3 and
4, respectively.

With DAFEM, low-level structural features can be effectively
enhanced by CDSA, which ensures the features of infrared UAV
targets to be passed down to deeper stages of the network. As a
result, those features are more likely to exist in deep layers. With
these retained features and the extra channel enhancement from
SCA, infrared UAV targets can be more accurately classified
and robust to the complex background, and thus have better
detection performance.

IV. EXPERIMENTS

In this section, we conduct experiments to validate the ef-
fectiveness of our method with other comparison methods. We
first introduce our datasets and the experiment setups we use
to train and test all methods, then present the quantitative and
qualitative experiment results. Finally, we design some ablation
experiments and report the results.

A. Datasets

We select nine infrared image sequences, each of which
exemplifies some representative problems in anti-UAV
scenarios, such as strong clouds background and motion
blur. The total number of all image sequences is 75 666 and the
sizes of the infrared UAV targets range from about 15 pixels to
more than 200 pixels for a multiscale infrared detection task.
We have meticulously labeled the targets in each sequence, and
divided them into the training set and the testing set with no
intersection. The division ratio is set to 9:1. Among our datasets
are two open-access infrared UAV datasets (Seq. 8 [24] and
Seq. 9 [25]), which we use to validate our method. Further
details can be referred to the supplementary material.

B. Evaluation Metrics and Experimental Setups

We employ the following commonly used metrics to verify
the performance of each method: 1) Detection precision (P); 2)
recall (R); 3) F1-measure (F1). FPS, network parameters, and
FLOPs are also included to evaluate the detection efficiency as
well as the model complexity. Theoretically, a qualified detection
method should be low in parameters and FLOPs, while high in
P, R, F1, and FPS.

The proposed network is trained by an SGD optimizer with
a total of 120 000 iterations, an initial learning rate of 0.001,
a batch size of 24, a momentum of 0.9, and a weight decay of
0.0005. The learning rate decays at iterations 80 000 and 100 000
by a magnitude. The framework is implemented on a server
with a NVIDIA GeForce RTX 3090 GPU and accelerated by
CUDA 11.1. We use Python 3.9 and Pytorch 1.8.1 for software
implementation.
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TABLE I
QUANTITATIVE COMPARISONS OF THE PROPOSED METHOD AND OTHER METHODS

For comparison, we select Faster R-CNN [7] and Cas-
cade R-CNN [8] as the two-stage baseline methods, and
SSD [9], RefineDet [19], RetinaNet [11], EfficientDet [12], and
YOLOv5 [10] as the one-stage baseline methods. We also choose
infrared small target detection method for comparison, i.e., the
model-driven method DNGM [6] and the data-driven method
ACM [14]. Note that for the Faster R-CNN, Cascade R-CNN and
RetinaNet, their bakcbone network is ResNet-50; for SSD and
RefineDet, their backbone is VGG-16; for the EfficientDet, we
choose its D1 architecture; For YOLOv5, we choose its yolov5l
configuration. For infrared small target detection methods, we
adopt their default settings. All these experiments are performed
with the same hardware and software, with each method tuned
to the optimal.

C. Quantitative Results

In this part, we present the quantitative comparisons for eight
selected infrared image sequences of the proposed method along
with eight of the aforementioned comparison methods, as shown
in Table I. It can be seen that the proposed method surpasses
the other ones. Especially for Seq. 2 and Seq. 4, our method
has reached impressive 1.0 scores in P, R, and F1, which is
a great demonstration of its ability to detect weak infrared
UAV targets in complex background circumstances. Also our

Fig. 8. P-R curves of Seq. 1, Seq. 2, Seq. 3, and Seq. 4. The area
under the curve (AUC) values are placed after methods’ names.

methods achieves a good balance between detection precision
and efficiency, verifying that our method is capable of real-time
UAV surveillance.

Furthermore, we present the P-R curves of eight methods for
Seq. 1–Seq. 4 in Fig. 8. Generally, a larger area under the P-R
curve represents a better detection performance. It can be seen
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Fig. 9. Qualitative detection results of Frame No. 2403 in sequence 2. The green and red boxes indicate the ground truth and the detection box,
respectively. The detection confidence scores for each method are: (b) 0.85; (c) 0.52; (d) 0.62; (e) 0.54; (f) Not detected and false alarm; (g) Not
detected; (h) Not detected; (i) Not detected (j) 1.00.

TABLE II
NETWORK PARAMETERS AND FLOPS OF EACH METHOD

that our method is consistently superior in accuracy to the other
seven methods.

Moreover, we list the model parameters and the FLOPs of
each method in Table II. For both model parameters and FLOPs,
ACM is of the lowest and Cascade R-CNN is of the highest, while
our method is relatively moderate in both metrics. This reveals
another balance regarding model complexity between two-stage
and single-stage methods, which is beneficial to detection tasks
in industrial scenarios without having to utilize heavy computa-
tional resources.

D. Qualitative Results

Figs. 9–11 are the qualitative detection results of our method
and other comparison methods for Seq. 2, Seq. 3, and Seq. 8,
respectively. Due to space limit, qualitative results of Seq. 1,
Seq. 4, Seq. 5, Seq. 6, Seq. 8, and Seq. 9 are placed in the
supplementary material. The green bounding boxes indicate the
actual locations of the targets, and the red boxes indicate the
detection results. Close-ups are given at the left-bottom corner
of each image for better visualization, and confidence scores are
given in each caption. In ground truth images, we use cyan words
“UAV Target” to indicate where the target is; in detection images,
we use yellow words “False Alarm” to indicate an incorrect
detection, and orange words “Not Detected” to imply a failure
of detection.

TABLE III
EFFECTIVENESS OF SCA, CDSA, DCA, AND FA

Fig. 9 is a typical example of an infrared UAV target immersed
in bright clouds barely exposed to be clearly seen. Fig. 10 shows
the UAV target largely occluded by background trees. Fig. 11
is a common scene where the unexpected motion blur by the
imaging device misting the target. The confidence scores by
the comparison methods vary greatly in the experiments. Note
that DNGM yields poor detection results in these three images,
having missed detections and false alrms; ACM also obtains
relatively poor detection results; RefineDet missed the target for
Seq. 2; two-stage baseline methods perform consistently; one-
stage methods, such as EfficientDet, RefineDet, and YOLOv5,
fail to detect targets in Seq. 2 or Seq. 3. Inconsistency and
miss detection may delay the following counter measures. In
contrast, our method has successfully detected the UAV targets
and consistently achieved satisfactory confidence scores and
overlapped better than the others, showing the robustness of our
method under different complex backgrounds.

E. Ablation Study

Several ablations are conducted to report the contributions of
the proposed techniques and ideas, i.e., SCA, CDSA, DCA, and
FA. More ablation studies can be found in the supplementary
material.
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Fig. 10. Qualitative detection results of Frame No. 2715 in sequence 3. The green and red boxes indicate the ground truth and the detection box,
respectively. The detection confidence scores for each method are: (b) 0.96; (c) 0.80; (d) 0.63; (e) Not detected; (f) 0.85; (g) 0.72; (h) Not detected
and false alarm; (i) Not detected and false alarm; (j) 1.00.

Fig. 11. Qualitative detection results of Frame No. 89 in sequence 8. The green and red boxes indicate the ground truth and the detection box,
respectively. The detection confidence scores for each method are: (b) 0.97; (c) 0.94; (d) 0.85; (e) 0.60; (f) 0.95; (g) 0.64; (h) Not detected and false
alarm; (i) 0.79; (j) 1.00.

(1) Integration of SCA, CDSA, DCA, and FA. Table III shows
the quantitative results of our detection method with/without
the proposed SCA, CDSA, DCA, and FA. It is evident that
individually they are able to improve the original detection
performance, and the combination of them achieves the best.
Compared to the first-row method, our method gains increments
in four metrics, which validates our purpose of incorporating
both in the network.

(2) Arrangement scheme for attention mechanisms in FE.
Table IV lists the quantitative results of different arrangements
in the backbone network of the proposed attention mechanisms,
and the last row represents our proposed arrangement (i.e.,
CDSA at first stage, SCA at last stage, and DCA at intermediate
stages). In order to comprehensively demonstrate the validity
of our proposed arrangement, we experiment with different
other arrangements of attention mechanisms and study their
quantitative detection results, including embedding SCA before
CDSA. It can be seen that the proposed arrangement achieves

the best performance in Table IV. We can have the following
extra observations.

1) From row 1 to row 5, as more SCA are gradually embed-
ded in the shallower layers, the detection performance
evidently decreases. While CDSAs are being embedded
back to the network from deep layers, the performance
of network again increases, specifically for metric P. This
verifies that spatial property enhancement is critical to
more effectively discriminate infrared UAV target against
its background.

2) From row 1 and row 5–8 we can see that, with a gradual
integration of SCA from the early stage, the overall de-
tection performance decreases evidently; from row 1 to
row 5 we can witness a rapid performance increase with
more CDSA integration at shallow stages. We conjuncture
that is due to the sufficient exploitation of target’s finer
features, and embedding spatial attention CDSA at early
stage is relatively more capable of utilizing those features.
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TABLE IV
EFFECTIVENESS OF DIFFERENT ARRANGEMENTS OF ATTENTION MECHANISMS INSIDE BACKBONE NETWORK

3) It can be observed that, from row 1 to row 5, a vanilla
arrangement of only using one type of attention does not
yield better results, while incorporating a mixture of atten-
tion mechanisms is more likely to achieve better results.

4) From row 9 and 10, methods incorporating DCA in in-
termediate stage yield better overall performance results
than all previous arrangements, and row 10 is about 1%
better than row 9. This not only means there is rich
structural and semantic information in the intermediate
stage and our DCA is able to exploit them effectively,
but also reveals the significance of more exploitation of
spatial properties.

In summary, we can conclude from Table IV that, if spa-
tial features are more properly utilized, especially at low-level
layers, infrared UAV targets can be detected more effectively.
Furthermore, it can be seen that our arrangement, with two DCA
embedded at layers in between, achieves the best performance of
all, which supports our claim that layers between shallow layers
and deep layers need to use combined attention mechanisms
to both retain and enhance critical features for better detection
performance.

V. CONCLUSION

This article proposes a novel DAGNet that is carefully de-
signed based on the contribution of hierarchical features to dif-
ferent scale target detection, in order to improve the performance
of detecting multiscale infrared UAV targets. We designed the
channel-modulated deformable spatial attention, spatial-aware
channel attention (SCA), and a combination of them for fo-
cusing on small-scale, large-scale, and medium-scale targets,
respectively. We also integrated the feature aggregator into the
detection branches to encode spatial details of shallow layers into
deep layers as well as increase the task-awareness with SCA. Our
method is verified to have good generality on real infrared UAV
data, with better results than those by state-of-the-art baseline
object detection methods (e.g., YOLOv5 [10]) and infrared small
target detection methods (e.g., ACM [14]), and is potentially
applicable in anti-UAV surveillance systems. For future research
into infrared UAV target detection, we deem it is critical to focus

on preserving more features of UAV targets, especially of small
and dim ones, so as to prevent those features from vanishing in
the network.
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