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ABSTRACT
Multi-scale infrared unmanned aerial vehicle (UAV) targets (IRUTs)
detection under dynamic scenarios remains a challenging task due
to weak target features, varying shapes and poses, and complex
background interference. Current detection methods find it difficult
to address the above issues accurately and efficiently. In this paper,
we design a dynamic attentive network (DANet) incorporating a
scale-adaptive feature enhancement mechanism (SaFEM) and an
attention-guided cross-weighting feature aggregator (ACFA). The
SaFEM adaptively adjusts the network’s receptive fields at hier-
archical network levels leveraging separable deformable convolu-
tion (SDC), which enhances the network’s multi-scale IRUT aware-
ness. The ACFA, modulated by two crossing attention mechanisms,
strengthens structural and semantic properties on neighboring lev-
els for the accurate representation of multi-scale IRUT features
from different levels. A plug-and-play anti-distractor contrastive
regularization (ADCR) is also imposed on our DANet, which en-
forces similarity on features of targets and distractors from a new
uncompressed feature projector (UFP) to increase the network’s
anti-distractor ability in complex backgrounds. To further increase
the multi-scale UAV detection performance of DANet while main-
taining its efficiency superiority, we propose a novel scale-specific
knowledge distiller (SSKD) based on a divide-and-conquer strategy.
For the “divide” stage, we intendedly construct three task-oriented
teachers to learn tailored knowledge for small-, medium-, and large-
scale IRUTs. For the “conquer” stage, we propose a novel element-
wise attentive distillation module (EADM), where we employ a
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pixel-wise attention mechanism to highlight teacher and student
IRUT features, and incorporate IRUT-associated prior knowledge
for the collaborative transfer of refined multi-scale IRUT features
to our DANet. Extensive experiments on real infrared UAV datasets
demonstrate that our DANet is able to detect multi-scale UAVs with
a satisfactory balance between accuracy and efficiency.
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1 INTRODUCTION
Unmanned aerial vehicles (UAVs), popularly employed in commer-
cial and industrial applications such as aerial photography and
environmental monitoring [9, 13], are becoming a great threat to
aerial safety and public security. With the capability of monitoring
UAVs at a long range in both day and night scenarios, the infrared
thermal imaging-based UAV surveillance measure emerged as a key
perception technology for UAV surveillance in anti-UAV systems.
However, infrared UAV target (IRUT) detection still remains a very
challenging task for weak target features (i.e., dim in illuminance
and small in size, thus easy to be submerged), variation in target
scales (dynamic flying creates a varying IRUT scale range), and
distractors in complex backgrounds (e.g., birds and leaves similar
to IRUTs), as shown in Fig. 1. These factors usually lead to missed
detections and false alarms [9].

Many works have been dedicated to addressing the problems of
infrared target detection [1, 2, 6, 7, 9, 10, 13, 14, 23, 34, 38, 41, 46–49],
which can be categorized into two groups: traditional methods and
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Figure 1: Illustrations of three challenges in IRUT detection
tasks. The ‘L’, ‘M’, and ‘S’ denote large-, medium-, and small-
scale IRUTs.

deep learning (DL) -based methods. The former ones (e.g., PSTNN
[46], DNGM [40], WSLCM [14]), based on hand-crafted IRUT fea-
tures, are comparatively light-weight but less robust to complex
backgrounds [48]. The latter ones are more powerful since they
can adaptively learn sophisticated feature representations of IRUTs
driven by a large amount of data. Many object detection methods,
such as FCOS [33] and ATSS [50], have shown satisfactory perfor-
mance on general tasks of visible images, but are less competent in
IRUT detection since IRUTs have relatively fewer feature details
[9]. Despite some works (e.g., MDvsFA [34], ACM [6], ALCNet [7],
DNA-Net [23], ISNet [49], DAGNet [9]) attempted to design DL-
based methods for infrared target detection, some issues remain
unsolved: first, these methods mostly focus on small-scale infrared
targets, with less attention on medium- and large-scale ones; sec-
ond, they still suffer from poor discrimination toward distractors
in complex backgrounds, which leads to false alarms; third, these
methods usually have an imbalance between detection accuracy
and efficiency, which is not compatible with real-time applications.

The feature weakness and varying scales of IRUTs bring great
challenges for IRUT detection tasks. Recently, attention mecha-
nisms [11, 19, 20, 35, 39] have drawn much attention for their abil-
ity to enhance target features and suppress the backgrounds, but
their pooling operations compress valuable target features, which
is harmful to IRUT detection [6]. Some works [6, 7, 9] adopt less
feature compression, but their structures with fixed-size convo-
lutions limit the perception of multi-scale IRUTs. To dynamically
perceive targets with varying scales, studies have employed de-
formable convolution [5, 43, 52] in multi-scale object detection.
Despite great achievements, this approach also increases model
complexity and causes inference time overhead. Therefore, it is
crucial to design a network mechanism for dynamic multi-scale
IRUT feature perception and enhancement.

Distractors in complex backgrounds, with similar features to real
IRUTs (particularly for small-scale ones), will affect detection per-
formance as well, so learning the discriminative features of IRUTs
and distractors is of great significance. Contrastive learning, enforc-
ing similarity on positive/negative samples for discrimination, has
been proven effective for distinguishing foreground/background
objects [4, 18, 32, 37]. But these works did not fully consider that
distractors have similar sparse distributions to those of IRUTs in the
image, which are different from random backgrounds and should be
specifically sampled. In addition, many works employ multi-layer
perceptron (MLP) as feature projectors, which compresses features
into vectors for similarity computation. Heavy feature compression
may lead to losses of IRUT features (especially small-scale ones),
and thus cause performance degradation.

For real-world applications, the detection model should perform
both accurately and efficiently. Recently, detectors based on knowl-
edge distillation (KD) [16] training strategy have shown impres-
sive effectiveness, where sophisticated knowledge from a teacher
model is transferred to a student model to compensate for the de-
tection performance [24, 27, 29, 30, 42, 44, 45, 51]. There are also
KD schemes that adopt multiple teachers to further improve the
student’s detection performance [12, 22, 25, 26, 28]. However, these
methods fail to effectively transfer tailored multi-scale IRUT knowl-
edge, and might lead to limited performance improvement. We
stress that each teacher should discretely transfer knowledge to the
student to increase multi-scale awareness.

To address the multi-scale IRUT detection task, in this paper
we present a novel dynamic attentive network (DANet). For the
backbone, we construct a four-stage multi-branch network to fully
excavate feature representations of multi-scale IRUTs, and we inte-
grate a scale-adaptive feature enhancement mechanism (SaFEM)
at the end of each stage to adaptively enhance multi-scale IRUT
features. A separable deformable convolution (SDC), divided into
depth-wise and point-wise parts to reduce computation, is adopted
to generate dynamic attention weight in the SaFEM, which alters
the receptive fields according to the scale variation of IRUTs by
adding a learnable weighted offset to the convolutional kernel. A
grouping strategy is also used to learn richer feature represen-
tations from different subspaces in one convolution. Our SaFEM
not only can effectively enhance IRUTs and suppress backgrounds,
but also can dynamically perceive IRUTs of various scales without
much model complexity increment. For the bottleneck, we embed
an attention-guided cross-weighting feature aggregator (ACFA) in
the feature fusion process. It employs two uncompressed attention
branches to exchange critical fine spatial and coarse semantic prop-
erties for the accurate representation of multi-scale IRUT features
from different levels.

We propose an anti-distractor contrastive regularization (ADCR),
which extracts positive/negative samples from regional features of
the IRUTs/distractors, and further projects them through a novel
uncompressed feature projector (UFP) for the final similarity com-
putation. ADCR is only used on our DANet during training, with no
computation overhead during inference. With ADCR, the network
is able to finely discriminate between IRUTs and distractors, and
thus significantly reduce false alarms.

To further increase the multi-scale IRUT detection performance
of our DANet without sacrificing detection speed, we present a
new divide-and-conquer strategy-based scale-specific knowledge
distiller (SSKD). At the “divide” stage, we use three task-oriented
teacher models, i.e., teachers for detecting small-, medium-, and
large-scale IRUTs, to learn precise IRUT features corresponding to
their own assigned scales and yield highly accurate detection results.
At the “conquer” stage, we collaboratively transfer the multi-scale
IRUT knowledge from the above three teachers to our DANet with
a novel element-wise attentive distillation module (EADM). The
EADM makes sure our DANet concentrates on learning refined
feature knowledge from the teachers adopting an uncompressed
attention mechanism, where it highlights the IRUT features in an
element-wise way and suppresses the background.

Our main contributions are as follows.
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1) A detector model DANet for multi-scale IRUT detection task
is presented. It leverages SaFEM to highlight multi-scale IRUTs in
complex backgrounds with SDC, which allows our model to have an
effective dynamic perception of IRUTs with varying scales without
heavy model complexity. We also introduce an ACFA to the feature
fusion process in our DANet, which complements critical feature
properties between two neighboring feature levels with spatial
and semantic information. Furthermore, to address the distractor
issue, we design an ADCR that utilizes UFP to enforce similarity
calculation on IRUTs and distractors, improving the discrimination
ability towards distractors of our DANet.

2) To further boost the detection accuracy on each scale of IRUTs
for our DANet, we introduce a new SSKD based on a divide-and-
conquer strategy. It employs three task-oriented teachers responsi-
ble for small-, medium-, and large-scale IRUT detection. To transfer
this refined multi-scale knowledge to our DANet, we adopt EADM
in our SSKD that utilizes various adaptive attention mechanisms to
enhance and integrate critical features for effective learning.

3) We evaluate the proposed DANet on a composed multi-scale
IRUT dataset. Extensive experiments demonstrate that our method
achieves superior detection performance against other SOTA meth-
ods, and realizes real-time detection.

2 RELATEDWORKS
Infrared Small Target Detection.Methods for this task can be
categorized into traditional and DL-based ones. The former ones
(e.g., PSTNN [46], DNGM [40],WSLCM [14]) struggle to identify the
targets, especially when targets are weak and the backgrounds are
complex. This is because they mostly use the local contrast of the
infrared images, thus yielding poor results. In contrast, DL-based
methods (e.g., MDvsFA [34], ACM [6], ALCNet [7], DNA-Net [23],
ISNet [49], DAGNet [9]) are more effective and robust with a greater
model capacity. Unlike detectors for visible images like FCOS [33]
and ATSS [50], these methods are more effective for IRUT detec-
tion with architectures meticulously designed for infrared small
target detection tasks. However, current DL-based methods mainly
focus on small-scale infrared targets while neglecting real-world
scenarios with multi-scale ones, and they suffer from insufficient
usage of critical target features (e.g., heavy feature compression
operations, and lack of discrimination of distractors), which leads
to performance degradation. In our work, we exploit the attention
mechanism by integrating an SDC to comprehensively enhance our
DANet’s ability to perceive multi-scale IRUTs. We also employ con-
trastive learning to our DANet for discriminating distractors, which
samples features directly from IRUTs and distractors, and projects
them with no information loss for an accurate feature distinction.
Attention Mechanism. The purpose of the attention mechanism
in vision tasks is to adaptively enhance target features while sup-
pressing backgrounds. Classic attention mechanisms, such as SE-
Net [19], CBAM [39], and ECA-Net [35], contain global pooling
operations for obtaining attention weights, which is useful for visi-
ble images with rich features but not for infrared images with weak
features. Although some works on infrared small targets (e.g., ACM
[6] and DAGNet [9]) altered attention mechanisms to preserve finer
features for accurate feature enhancement, they only use stacks of
convolutions with fixed receptive fields to perceive targets, which
limits their capability of effectively enhancing IRUTs of varying

scales. The proposed attention mechanism SaFEM combines a sepa-
rable deformable convolution for the dynamic perception of IRUTs
with no feature compression, and thus is able to enhance multi-scale
IRUTs more precisely. We also propose ACFA utilizing an uncom-
pressed weighting measure to realize a comprehensive fusion of
different features from neighboring levels.
Knowledge Distillation. KD in vision tasks is to transfer powerful
teacher knowledge to a student model so that the student model
can achieve a better performance while maintaining its superior
efficiency. Current KD methods for object detection mostly focus
on general detection tasks for visible images with richer details [9],
contrary to IRUT detection with weak target features and heavy
background interference, thus misleading the student by incorrect
knowledge transfer. Some works have adopted KD in infrared target
detection (e.g., CMD [29], AID [22]), but their teachers are not tai-
lored for multi-scale IRUT detection, which limits the performance
improvement. In this work, we develop SSKD with three teachers
each responsible for IRUT detection of one single scale, and use
EADM to effectively transfer refined knowledge to our DANet.

3 METHODOLOGY
3.1 DANet
In this subsection, we present the overview of our DANet, as dis-
played in Fig. 2. To achieve a subtle tradeoff between detection
accuracy and efficiency, we compose the backbone of DANet of
four network stages, which consist of 4, 6, 16, and 1 multi-branch
blocks (MBBs). Inspired by RepVGG [8], each MBB, consisting of
three branches (i.e., a Conv3×3 branch, a Conv1×1 branch, and
a shortcut branch), can extract and integrate rich multi-receptive
field contextual properties of IRUTs, which enables our DANet to
detect IRUTs more accurately. Additionally, in the inference phase,
MBB will transform into a single-branch structure, reducing in-
ference time. At the end of each stage, a SaFEM is embedded in
order to dynamically enhance IRUT feature representations with
uncompressed attention based on an SDC. The proposed SaFEM
can further adjust the receptive fields of our DANet, and is also able
to adaptively highlight critical features of IRUTs while suppress-
ing backgrounds. To increase discrimination of distractors in the
complex backgrounds, the SaFEM-enhanced feature maps will be
fed into the proposed ADCR, which extracts features from regions
of IRUTs/distractors and calculate similarities on features obtained
by UFP. To ensure the network is able to fully exploit multi-level
IRUT features, enhanced feature maps from each stage will be sent
to ACFA for a comprehensive feature fusion by a cross-weighting
mechanism. By ACFA, our DANet can simultaneously make full
use of multi-level contexts of IRUTs for better multi-scale detection
performance. In a nutshell, the use of SaFEM, ACFA, and ADCR
jointly facilitates the accurate detection of our DANet.
3.1.1 Scale-adaptive Feature Enhancement Mechanism (SaFEM).
Multi-scale IRUT detection tasks consist of targets with very dy-
namically heterogeneous characteristics (such as shapes, poses,
contrast, etc.), where typical attention mechanisms with stacks of
static convolutions will result in a limited perception of different
IRUTs. Furthermore, with global pooling operations, many existing
attention mechanisms fail to preserve critical spatial properties
for IRUTs, leading to inaccurate feature enhancement. Our SaFEM
leverages the SDC to extract rich details of multi-scale IRUTs with
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Figure 2: Overview of the proposed DANet. SaFEM, ACFA, andADCR are introduced in Sections 3.1.1, 3.1.2, and 3.1.3, respectively.
dynamic receptive fields, while maintaining the entire dimension-
ality of feature maps for precise feature enhancement.

The structure of SaFEM is shown in Fig. 2, where we adopt
an SDC and an FFN to achieve attention weight. To alleviate the
complexity of deformable convolution that affects detection speed,
inspired by [17, 36, 52], we detach the original deformable convolu-
tion into the dynamic spatial aggregation by a separable depth-wise
deformable convolution, and the channel projection among sam-
pling points by an FFN. The former is responsible for excavating
multi-scale spatial features of IRUT by enforcing a location offsetΔ𝑝
on each sampling point of the original convolutional kernel. With
the adaptive offsets representing scale variations, the multi-scale
features of IRUT can be more effectively and efficiently captured
and exploited. We also use a learnable modulation scalar𝑚 to mod-
ulate the significance of each location offset, so as to ensure the
effectiveness of receptive field adjustment for multi-scale IRUTs.
Moreover, to learn richer information from various representation
subspaces at different locations, inspired by the multi-head self-
attention mechanism, we split the SDC into four individual groups,
where each group on this convolution will have different patterns
of spatial aggregation, leading to more robust representations of
multi-scale IRUT features. The SDC is formulated as follows:

y(𝑝0) =
𝐺∑︁
𝑔=1

𝐾∑︁
𝑘=1

w𝑔m𝑔𝑘x𝑔 (𝑝0 + 𝑝𝑘 + Δ𝑝𝑔𝑘 ), (1)

where 𝐾 represents the total number of sampling points, and 𝑝𝑘
is the 𝑘-th location of the predefined grid sampling points {(-1,-1),
(-1,0), ..., (0,+1), ..., (+1,+1)}. 𝐺 denotes the number of convolution
groups, which we set to 4. For the 𝑔-th group, w𝑔 ∈ R𝐶×𝐶′

is
the location-unrelated projection weights of the group, and 𝐶′ =
𝐶
𝐺

is the group dimension. m𝑔𝑘 means the Softmax-normalized
modulation scalar of the 𝑘-th point within the 𝑔-th group. x𝑔 ∈
R𝐶

′×𝐻×𝑊 represents the sliced input feature map, and Δ𝑝𝑔𝑘 is the
dynamic offset related to the sampling location 𝑝𝑘 in the 𝑔-th group.
The overall process can be denoted as:

F𝑒 = Softmax(FFN(SDC(F𝑖𝑛𝑝𝑢𝑡 ))) ⊙ F𝑖𝑛𝑝𝑢𝑡 , (2)
where F𝑖𝑛𝑝𝑢𝑡 and F𝑒 denote the input and output feature map, ⊙
means the element-wise multiplication. The FFN are two linear
layers that project the channel dimensionality 2× then restore it

back. Note that there is no spatial compression throughout, which
is favorable for preserving fine details of multi-scale IRUTs. With
SaFEM, the IRUT features will be adaptively and dynamically en-
hanced regardless of scale variations, thus yielding more robust
detection results.

3.1.2 Attention-guided Cross-weighting Feature Aggregator (ACFA).
Many works have rectified the structure of FPN for infrared small
target detection [6, 7, 9] However, these works only focus on small-
scale IRUT detection while overlooking other scales. Thus, we pro-
pose ACFA which employs dynamic channel and spatial attention
mechanisms to extract critical semantics as well as structures, and
then cross-weights on the neighboring feature map to complement
feature details from different levels.

As shown in Fig. 2, assume the shallow and the deep feature
maps are F𝑠 ∈ R𝐶×𝐻×𝑊 and F𝑑 ∈ R𝐶×

𝐻
2 ×𝑊

2 , respectively. F𝑠 will
first be fed into a spatial attention module to calculate the spatial
weights of critical structures w𝑠 ∈ R𝐶×𝐻×𝑊 . We use SaFEM as
the spatial attention module to highlight multi-scale features for a
comprehensive perception, especially for small-scale IRUTs. Mean-
while, F𝑑 will go through a channel attention module and yield
the channel weights of critical semantics w𝑑 ∈ R𝐶×1×1, which is
instantiated by an SDC, a global average pooling, and an FFN. The
global average pooling is to obtain the overall spatial response of
each channel from F𝑑 , the SDC is to assist the pooling operation to
yield more IRUT-representative responses of each channel for the
channel weights, and the point-wise convolutions are for dimen-
sion projection. Overall, this channel attention is able to underline
low-level critical semantics conducive to medium- and large-scale
IRUT detection. Hence, w𝑠 will be element-wisely multiplied onto
F′
𝑑

∈ R𝐶×𝐻×𝑊 up-sampled by a deconvolution, while w𝑑 will
be channel-wisely multiplied onto F𝑠 , thus constructing a cross-
weighting process with the supplement of critical information of
semantics from deep layers as well as structures from shallow lay-
ers. The two enhanced feature maps will then be summed together
to form the final fused feature map. The ACFA is achieved via:

w𝑠 = SaFEM(F𝑠 ), (3)
w𝑑 = Sigmoid(FFN(GAP(SDC(F𝑑 )))), (4)
F𝑜 = w𝑠 ⊙ DeConv(F𝑑 ) +w𝑑 ⊗ F𝑠 , (5)
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Figure 3: Overview of our scale-specific knowledge distiller (SSKD). “S-s”, “M-s”, and “L-s” denote “Small-scale”, “Medium-scale”,
and “Large-scale”, respectively. The output feature maps from each matching stage will all be computed for feature-based
distillation with EADM. For simplicity, we only display the distillation between our DANet and one teacher, and show LCDC
with a kernel of 3.
where GAP denotes global average pooling; ⊙ and ⊗ are element-
wise and channel-wise multiplication; F𝑜 is the fused output feature
map; DeConv means deconvolution.
3.1.3 Anti-Distractor Contrastive Regularization (ADCR). The back-
grounds where multi-scale IRUTs fly in usually contain interfer-
ences and distracting objects, which might cause false alarms. To
address this issue, we devise ADCR derived from contrastive learn-
ing, as shown in Fig. 2. Each output feature map from SaFEM will
be sent into ADCR for a comprehensive comparison of IRUTs and
distractors. Note that ADCR is only employed in the training phase.

The key to contrastive learning is to decide its positive and
negative samples. Unlike existing works for classification [3, 15, 21]
that determine samples by global features, we stress that the IRUT
in each image is the positive sample, and the distractors having
similar features to the IRUTs in the background are labeled as the
negative samples. The ratio of positive and negative samples is set
to 1:3, where we will randomly extract regions the same size as the
IRUT in the image as the negative samples if there are no evident
distractors. After obtaining the positive and negative samples, we
further feed them into the uncompressed feature projector (UFP)
to project features for the final similarity computation. Our UFP
is comprised of two MBBs, which are able to extract high-level
and multi-scale discriminative feature representations of IRUTS as
well as distractors. Particularly, compared to many existing works
adopting multi-layer perceptron that collapses features into vectors,
our UFP maintains the dimensionality of each sample, crucial for
preserving distinct features for the accurate discrimination of IRUTs
and distractors. Then the projected features are used to construct
the contrastive loss:

L𝐴𝐷𝐶𝑅 =

𝑁𝑝∑︁
𝑎=1

−1
𝑁𝑝

𝑁𝑝∑︁
𝑝=1

log
Φ(𝑠𝑎, 𝑠𝑝 )∑𝑁𝑝

𝑝=1 Φ(𝑠𝑎, 𝑠𝑝 ) +
∑𝑁𝑛

𝑛=1 Φ(𝑠𝑎, 𝑠𝑛)
, (6)

Φ(𝑥,𝑦) = exp ((𝑥 · 𝑦)/𝜇) , (7)
where 𝑠𝑎 , 𝑠𝑝 , and 𝑠𝑛 denote the anchor, the positive, and the negative
sample, respectively. 𝑁𝑝 and 𝑁𝑛 are the numbers of positive and

negative samples. 𝜇 is a temperature parameter. “·” represents the
cosine similarity.
3.2 Scale-Specific Knowledge Distiller (SSKD)
Based on a divide-and-conquer strategy, we present the SSKD to
further improve the multi-scale IRUT detection performance by
discretely transferring refined single-scale IRUT knowledge from
each responsible teacher model to our DANet using the proposed
EADM, as shown in Fig. 3.
3.2.1 Divide: Task-oriented Multiple Teachers. To further increase
the multi-scale IRUT detection performance, we conjecture that it
is also important to improve the detection performance on each
specific scale. We found that using three networks trained on three
datasets of different scales (i.e., small-, medium-, and large-scale
datasets) will yield respectively better detection results than those
by only one network trained on a hybrid multi-scale dataset. This
suggests that multi-scale IRUT knowledge from these networks is
more precise and robust, and it is worth further learning. To this
end, we meticulously design three different networks for small,
medium-, and large-scale IRUT detection, respectively, where each
network can offer high detection performance on the IRUT dataset
of their corresponding scales and provide sophisticated IRUT fea-
ture knowledge. We pre-train these networks to their optimum
based on their corresponding datasets, and then use them to further
train our DANet for further improving the multi-scale awareness.
More details can be found in the supplementary material.
3.2.2 Conquer: Element-wise Attentive Distillation Module (EADM).
IRUTs usually have weak features (especially for small-scale ones),
and complicated background interferences might affect detection
performance. In addition, the high-level knowledge from multiple
teachers may be difficult for our DANet to learn. Accordingly, it is
crucial to transfer the most valuable IRUT knowledge from three
teachers to our DANet correctly. To this end, we devise EADM to
tackle this problem, which consists of an element-wise knowledge
enhancement module (EKEM) to highlight critical IRUT features as
well as suppress background clutters in the intermediate feature
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maps from the teachers for effective distillation, and a novel atten-
tional prior-knowledge guidance module (APGM) to narrow the
learning difficulty by adaptively aggregating teacher crucial prior
knowledge to our DANet.

As shown in Fig. 3, we use three teacher models (i.e., small-,
medium-, and large-scale teachers) to further improve the multi-
scale IRUT detection performance of our DANet. Note that we
only assign images to the teachers corresponding to the scales of
IRUTs within. For example, if an image in a training mini-batch
contains one small-scale IRUT, this image will only be assigned
to the small-scale teacher, while the other two teachers will not
receive any inputs. Each teacher will have four stages in their archi-
tectures matching our DANet, and the output feature maps from
the corresponding stages will be used for feature-based distillation.
Take the student feature map F𝑠

𝑖
∈ R𝐶×𝐻×𝑊 (𝑖 means input, 𝐶 , 𝐻 ,

and𝑊 means channel, height, and width) and a teacher feature
map F𝑡

𝑖
∈ R𝐶×𝐻×𝑊 as an example, these two feature maps will

go through an EKEM for feature enhancement before distillation.
First, they will be flattened to 𝐻𝑊 × 1 ×𝐶 , and then sent to a local
cross-channel depth-wise convolution (LCDC) operation to com-
pute the significance of each spatial position. Unlike SENet [19] and
ECANet [35], a depth-wise convolution with kernel size (1, 𝑘) is
used to aggregate the local channel response of all spatial positions
from the input feature map, where the parameter 𝑘 is decided by
𝑘 = ⌊ log(𝑐 )+1𝜏 ⌋𝑜𝑑𝑑 . The 𝑐 denotes the number of input channels,
𝜏 is a temperature parameter set to 2, and ⌊𝑠⌋𝑜𝑑𝑑 means the floor
odd number of 𝑠 . With channel information focally organized, each
spatial position can represent its features more distinctively, which
facilitates the accurate generation of the attention map. Follow-
ing the reshape and the sigmoid layers, the attention map will be
element-wisely multiplied on the input feature maps F𝑠

𝑖
and F𝑡

𝑖
, thus

enhancing critical IRUT features for improving the performance
of knowledge transfer. The procedure of EKEM is formulated via
F𝑒 = 𝜎 (𝑅(LCDC(𝑅(F𝑖 )))) ⊙ F𝑖 , where 𝜎 and R denote the sigmoid
and reshape operations, respectively.

After EKEM, the enhanced features will be projected as F𝑠𝑝 ∈
R𝐶×𝐻×𝑊 and F𝑡𝑝 ∈ R𝐶×𝐻×𝑊 , and fed to the proposed APGM. Our
APGM can adaptively select important IRUT features from teachers
by the teacher prior knowledge selection, and aggregates themwith
features from DANet by the teacher prior knowledge integration
to construct the augmented student feature map F𝑠𝑎 ∈ R𝐶×𝐻×𝑊 .
At last, the feature-based distillation will perform between F𝑡𝑝 and
F𝑠𝑎 . At TPKS, an SE channel attention will adaptively sort the sig-
nificance of each channel from F𝑡𝑝 , and select the top 𝑘 (we set
𝑘 = 𝐶

8 ) most IRUT-related channels to concatenate with F𝑠𝑝 . The
selected knowledge represents the most important features that our
DANet needs to acquire in advance before distillation. Henceforth,
different knowledge will be fused together for a comprehensive
representation of multi-scale IRUT by an MBB to form the final F𝑠𝑎
for distillation.

The process of EADM can be expressed as follows.
F𝑝 = UFP(F𝑒 ), F𝑠𝑎 = TPKI(F𝑠𝑝 ,TPKS(F𝑡𝑝 )), (8)

L𝑆𝑆𝐾𝐷 = D(F𝑡𝑝 , F𝑠𝑎), (9)
where the distillation loss D is defined as a 𝑙2-norm loss, and
TPKI/TPKS denote the teacher prior knowledge selection/integration.

3.3 Overall Loss
The overall loss consists of the detection loss of DANet (a cross-
entropy classification loss and a smooth-𝑙1 regression loss), ADCR
loss, and SSKD loss. Therefore, the overall loss is written as

L = L𝑐𝑙𝑠 + L𝑟𝑒𝑔 + 𝜆1L𝐴𝐷𝐶𝑅 + 𝜆2L𝑆𝑆𝐾𝐷 , (10)
where we set the hyper-parameters 𝜆1 to 0.1, and 𝜆2 to 0.05.

4 EXPERIMENTS
4.1 Dataset and Evaluation Metrics
We conduct experiments on the real IRUT dataset consisting of
small-, medium-, and large-scale datasets.We adopt our own datasets
of 31,329 multi-scale IRUT images, where the numbers of the small,
medium-, and large-scale images are 13,489, 11,039, and 6,801, re-
spectively. We also add 10,712 multi-scale IRUT images from online
public datasets [6, 31, 49] to the overall dataset to construct an over-
all dataset of 42,041 images. The ratio of the training set and the test
set is set to 9:1. More details of the datasets (e.g., scale separation
criteria, dataset organization) can be found in the supplementary
material. For the evaluation metrics, we use precision (𝑃 ), recall
(𝑅), F1 measure (𝐹1), and frames per second (𝐹𝑃𝑆) to evaluate the
model performance.

4.2 Implementation Setups
We first train our DANet on our composed multi-scale dataset. We
adopt SGD optimizer with a learning rate of 10−3 and a weight
decay 10−4 to train our DANet for a total of 476 epochs using
a batch size 8. For SSKD, we pre-train the three teacher models
to their optimum on their scale-corresponding datasets to ensure
their effectiveness, and then freeze them to train our DANet using
the whole dataset with batch size 4. While training DANet with
SSKD, we will automatically decide which teacher model each
image sample to feed according to the IRUT scale; in the testing
phase, we feed the entire multi-scale test set to our DANet. All
experiments are conducted using Nvidia RTX 3090, with PyTorch
1.9 and CUDA 10.2. For comparisons, we select DNGM [40] as the
traditional infrared small target detection method; MDvsFA [34],
ACM [6], ALCNet [7], DNA-Net [23], ISNet [49], DAGNet [9] as
the DL-based infrared small target detection methods; and FCOS
[33] and ATSS [50] as the baseline detectors.

4.3 Quantitative Results
As shown in Table 1, it can be evidently seen that the P, R, and F1
metrics of the proposed DANet are higher than those of the rest
SOTA methods. For example, compared with the DAGNet which
achieves the overall second-best quantitative results, our DANet
has improved P, R, and F1 by 2.93%, 2.42%, and 2.67%, respectively.
Meanwhile, our DANet maintains a decent detection efficiency of
31.57 FPS, meaning that DANet keeps a subtle balance between
detection accuracy and efficiency. The traditional infrared small
target detection method DNGM yields poor detection results due to
limitations brought by its handcrafted feature filter design, thus not
compatible with varying and complex detection conditions. The DL-
based infrared small target detection methods obtain much better
results than the DNGM but are still inferior to our DANet. We think
it is due to their insufficient ability to perceive multi-scale IRUTs
within complex backgrounds, where their architectures lack enough
tailored structures to learn sophisticated and refined knowledge of
IRUTs of different scales. The baseline detectors, however, achieve
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Table 1: Quantitative results of our DANet and other SOTA
methods on the composed multi-scale datasets.

Method Evaluation metrics
P R F1 FPS

DNGM [40] 37.17 40.02 38.54 14.99
MDvsFA [34] 85.69 88.18 86.92 28.84
ACM [6] 89.14 88.68 88.91 36.18

ALCNet [7] 88.58 90.29 89.40 34.51
DNA-Net [23] 89.54 87.06 88.28 27.59
ISNet [49] 91.23 90.61 90.92 33.16
DAGNet [9] 92.75 90.09 91.40 34.95
FCOS [33] 86.88 82.97 84.88 26.10
ATSS [50] 87.63 90.46 89.03 29.77
DANet 95.68 92.51 94.07 31.57

Figure 4: P-R Curve of our DANet with other SOTA methods.
DNGM does not appear due to low detection accuracy.
mediocre results with less satisfying efficiency, which is because
their structures are not meticulously designed for IRUT detection.

We also plot the P-R curves for each comparison method shown
in Fig. 4. The p-R curve is a balanced graphical representation to
evaluate an object detection algorithm, and the area under the curve
indicates the average precision of the method, where the higher is
the value the better. It can be seen that our method achieves the
largest area under the curve with the best average precision of all
detection methods.

4.4 Qualitative Results
We present six representative detection results in Fig. 5 to demon-
strate the effectiveness of the proposed DANet. The methods we
choose to compare are the six overall best-performed methods re-
ported in Table 1, including our DANet. From Fig. 5 rows (a)-(c), the
detection of three images containing large-, medium-, and small-
scale IRUTs are displayed, whose target sizes are 52×42, 12×11,
and 5×3, respectively. Rows (c), (e) and (f) are the results of the six
methods on the public datasets “A dataset for multi-sensor drone
detection” [31], IRSTD-1k [49] and NUAA-SIRST [6], respectively.
It can be seen that our DANet is able to yield robust detection
results regardless the IRUT scale variations. In comparison, the
DAGNet fails to detect the large- and medium-scale IRUTs, and
the ISNet fails to detect the small-scale IRUT. Besides, for medium-
and small-scale IRUTs in rows (b) and (c), most methods mistake
similar objects in the sky as the IRUTs, thus causing false alarms.
As for rows (d) and (e), they are two typical scenes of complex
backgrounds containing distractors. For row (d), the target is flying

Table 2: Ablation studies of the effectiveness of SaFEM, ACFA,
ADCR, and SSKD for our DANet.

Model Metrics
SaFEM ACFA ADCR SSKD P R F1 FPS

- - - - 90.07 87.93 88.98 38.86
✓ - - - 90.88 89.95 90.41 31.59
- ✓ - - 90.39 88.57 89.47 34.83
- - ✓ - 92.10 89.02 90.53 34.91
- - - ✓ 91.93 90.44 91.18 35.85
✓ ✓ - - 93.85 91.76 92.79 35.85
✓ ✓ ✓ - 94.11 91.59 92.83 30.29
✓ ✓ - ✓ 93.87 92.19 93.02 31.58
✓ ✓ ✓ ✓ 95.68 92.51 94.07 31.57

in front of the buildings afar; for row (e), the target is with trees and
bushes. We can see our DANet is the only method that accurately
detects the IRUTs from the complex backgrounds, while the other
methods all yield incorrect results affected by the distractors: in row
(d), all methods mistake a section of the building in the trees as the
IRUT, as ALCNet further misidentify an object in the bushes; in row
(e), all the comparison methods mistake the tree leaves as the IRUTs.
Row (f) demonstrates a scenario with strong building interference,
where our DANet is the only one that accurately detects the IRUT
while all the others fail. These results verify the effectiveness of our
DANet, which adopts various adaptive attention mechanisms to im-
prove the model’s multi-scale IRUT awareness and uses contrastive
learning to improve distractor discrimination.

4.5 Ablation Study
In this paper, we present the ablation studies on our SaFEM, ACFA,
ADCR, and SSKD to demonstrate the effectiveness of our method.
We use our DANet minus the proposed SaFEM, ACFA, ADCR, and
SSKD as the comparison baseline for our ablation studies. More
ablations and details (e.g., different structures of the proposed tech-
niques, SSKD with different teachers, LCDC effectiveness in EKEM,
etc.) can be found in the supplementary material.

The impact of SaFEM, ACFA, and ADCR. As shown in Table
2, we notice that our DANet yields better results while utilizing any
of SaFEM, ACFA, and ADCR, compared with row 1 where none
of these techniques are used. It is worth noticing that the overall
performance improvement peaks when our DANet is equipped
with ADCR in contrast to SaFEM and ACFA, with an improvement
of 2.03% in P and 1.55% in F1. This indicates that each of these
techniques is able to effectively strengthen the multi-scale IRUT
awareness of our DANet, as ADCR is more effective w.r.t. discrimi-
nating distractors in complex backgrounds. Our DANet performs
even better while having SaFEM, ACFA, and ADCR all together,
suggesting that these techniques offer to be a collaborative contribu-
tion to the effectiveness of multi-scale IRUT detection. The SaFEM
can dynamically enhance multi-scale feature representations for
ADCR and ACFA to more precisely learn high-level discriminative
information for better detection performance.

The impact of SSKD. Reported in rows 1 and 7 from Table 2,
it can be seen that there is an improvement of 1.06% in P, 2.51% in
R, and 2.20% in F1 with the proposed SSKD. If our DANet is em-
ployed with SaFEM, ACFA, and ADCR, the performance is further
improved by 1.57% in P, 0.92% in R, and 1.24% in F1, according to
rows 6 and 8. This is because our designed task-oriented teachers
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Figure 5: Qualitative results of our DANet and other SOTA methods. The comparison involves the six overall best-performed
methods reported in Table 1. The target sizes in these images are 51×42, 12×11, 5×3, 11×8, 8×8, and 8×5. The green, red, and
yellow boxes denote the ground truths, the correct detections, and the false alarms, respectively. We display close-ups in each
image, where the ground truths and the correct detection results are magnified at the left-bottom corner, and the false alarms
are put at other corners.

are able to extract high-level refined multi-scale IRUT knowledge,
and transfer them to our DANet effectively via EADM, verifying
the effectiveness of our SSKD. Additionally, attributed to the dy-
namic perception ability, our DANet is also capable of acquiring
sophisticated multi-scale IRUT knowledge from the three teachers
of SSKD, which cooperatively strengthens the knowledge learning
process so as to improve the detection performance.

5 CONCLUSION
In this paper, we propose a DANet to address the multi-scale IRUT
detection task in various complex backgrounds. To enable our
DANet to have dynamic perceptions of IRUTs with various scales,
we embed the SaFEM at the end of each stage of our DANet, which
exploits the SDC with its dynamic offsets for convolutional kernels
to realize accurate multi-scale IRUT feature highlighting as well as
background suppressing. We also design an ACFA to fuse features
from different levels by complementing high-level semantics with
dynamic channel attention and low-level structures with dynamic
spatial attention. An ADCR is devised to tackle the discrimination
between IRUTs and distractors in complex backgrounds, which is

by enforcing similarity computation on distinguishing features pro-
jected by a UFP. To further improve the multi-scale IRUT detection
performance, we introduce the SSKD based on a divide-and-conquer
strategy. At the “divide” stage, we utilize three different teacher
models to solve IRUT detection on small-, medium-, and large-scale
IRUT datasets, respectively. At the “conquer” stage, we adopt the
EADM, which leverages attention mechanisms to collaboratively
transfer tailored knowledge from the teachers to our DANet. Exten-
sive experiments have verified the validity of our method, which
obtains high detection accuracy and realizes real-time detection.
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